| Peer-Reviewed

In Vitro Evaluation of Putative Probiotic Candidates Isolated from Various Origins

Received: 12 August 2022    Accepted: 7 September 2022    Published: 13 January 2023
Views:       Downloads:
Abstract

Present study describes isolation of potential probiotic lactic acid bacteria from chicken crop, human feces, buttermilk and chilly. The isolated Lactobacillus strains survive, tolerate and grow in MRS medium spiked with bile, salt and having acidic pH. The Lactobacillus isolates possess several probiotic properties, viz. (i) ability to bind gastrointestinal mucosa, up to ≥80% cells adhered mucin, (ii) 50% cells retained viability during oro-gastro-intestinal transit, (iii) all the isolates exhibited broad anti-microbial spectrum against food spoilage and gastro-intestinal pathogens, Limosilactobacillus fermentum SBM showed maximum inhibition, (iv) ability to produce enzymatic activities like L-asparaginase, β-galactosidase and bile salt hydrolase (BSH) activities, Limosilactobacillus fermentum SBM showed maximum L-asparaginase activity (2.567 U/ml), and Lactiplantibacillus pentosus GCHI showed maximum β-galactosidase activity (296±0.1 Miller’s Unit), (v) Lactiplantibacillus pentosus GCHI aggregated up to ≥92% after 24 h, and (vi) the Lactobacillus isolates were susceptible towards nucleic acid synthesis inhibitors and cell wall synthesis inhibitor antibiotics. These Lactobacillus strains do not possess haemolytic, mucin degrading and DNase activities indicating their safety. Further characterization of these strains indicated potential probiotic properties and their suitability in food formulations as probiotics. The study presents an interesting illustration of mining of potential probiotic strains from nature exhibiting health benefits for human being and animals.

Published in International Journal of Microbiology and Biotechnology (Volume 8, Issue 1)
DOI 10.11648/j.ijmb.20230801.11
Page(s) 1-9
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Anti-Microbial Activity, BSH, Lactobacillus Strains, L-asparaginase, Probiotics, Safety Evaluation

References
[1] Hill, C. Guarner, F. Reid, G. Gibson, G. R. Merenstein, D. J. Pot, B. & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11 (8), 506-514. https://doi.org/10.1038/nrgastro.2014.66.
[2] Molin, G. (2001). Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. The American Journal of Clinical Nutrition, 73 (2), 380s-385s. https://doi.org/10.1093/ajcn/73.2.380s
[3] Kimoto, H. Ohmomo, S. Nomura, M. Kobayashi, M. & Okamoto, T. (2000). In vitro studies on probiotic properties of lactococci. Milchwissenschaft, 55 (5), 245-249. https://doi.org/10.3168/jds.S0022-0302(02)74406-8.
[4] Begley, M. Gahan, C. G. & Hill, C. (2005). The interaction between bacteria and bile. FEMS Microbiology Reviews, 29 (4), 625-651. https://doi.org/10.1016/j.femsre.2004.09.003.
[5] Boricha, A. A. Shekh, S. L. Pithva, S. P. Ambalam, P. S. & Vyas, B. R. M. (2019). In vitro evaluation of probiotic properties of Lactobacillus species of food and human origin. LWT, 106, 201-208. https://doi.org/10.1016/j.lwt.2019.02.021.
[6] Bove, P. Russo, P. Capozzi, V. Gallone, A. Spano, G. & Fiocco, D. (2013). Lactobacillus plantarum passage through an oro-gastro-intestinal tract simulator: Carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiological Research, 168 (6), 351-359. https://doi.org/10.1016/j.micres.2013.01.004
[7] Parvez, S. Malik, K. A. Ah Kang, S. & Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100 (6), 1171-1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x
[8] Turnbaugh, P. J. Ley, R. E. Mahowald, M. A. Magrini, V. Mardis, E. R. & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444 (7122), 1027-1031. https://doi.org/10.1038/nature05414
[9] Bahar, R. & Andrew, S. (1999). Bile acid transport. Gastroenterology Clinics of North America, 28, 27-58. https://doi.org/10.1016/s0889-8553(05)70042-x
[10] Legan, J. D. (1993). Mould spoilage of bread: the problem and some solutions. International Biodeterioration & Biodegradation, 32 (1-3), 33-53. https://doi.org/10.1016/0964-8305(93)90038-4
[11] Kumar, R. Grover, S. & Batish, V. K. (2011). Hypocholesterolaemic effect of dietary inclusion of two putative probiotic bile salt hydrolase-producing Lactobacillus plantarum strains in Sprague–Dawley rats. British Journal of Nutrition, 105 (4), 561-573. https://doi.org/10.1017/s0007114510003740
[12] Goldin, B. (2011). Probiotics and health: from history to future. Probiotics and Health Claims, 1-16. https://doi.org/10.1002/9781444329384.ch1.
[13] Panesar, P. S. Kumari, S. & Panesar, R. (2010). Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Research, 2010. https://doi.org/10.4061/2010/473137
[14] Kim, J. W. & Rajagopal, S. N. (2000). Isolation and characterization of β-galactosidase from Lactobacillus crispatus. Folia Microbiologica, 45 (1), 29-34. https://doi.org/10.1007/bf02817446
[15] Jha, S. K. Pasrija, D. Sinha, R. K. Singh, H. R. Nigam, V. K. & Vidyarthi, A. S. (2012). Microbial L-asparaginase: a review on current scenario and future prospects. International Journal of Pharmaceutical Sciences and Research, 3 (9), 3076. https://www.researchgate.net/publication/266507302_MICROBIAL_L-ASPARAGINASE_A_REVIEW_ON_CURRENT_SCENARIO_AND_FUTURE_PROSPECTS
[16] Verma, N. Kumar, K. Kaur, G. & Anand, S. (2007). L-asparaginase: a promising chemotherapeutic agent. Critical Reviews in Biotechnology, 27 (1), 45-62. https://doi.org/10.1080/07388550601173926
[17] De Man, J. C. Rogosa, D. & Sharpe, M. E. (1960). A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology, 23 (1), 130-135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
[18] Pinto, M. G. V. Franz, C. M. Schillinger, U. & Holzapfel, W. H. (2006). Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. International Journal of Food Microbiology, 109 (3), 205-214. https://doi.org/10.1016/j.ijfoodmicro.2006.01.029
[19] Charteris, W. P. Kelly, P. M. Morelli, L. & Collins, J. K. (1998). Ingredient selection criteria for probiotic microorganisms in functional dairy foods. International Journal of Dairy Technology, 51 (4), 123-136. https://www.researchgate.net/publication/229645512_Ingredient_selection_criteria_for_probiotic_microorganisms_in_functional_dairy_foods
[20] Pithva, S. Shekh, S. Dave, J. & Vyas, B. R. M. (2014). Probiotic attributes of autochthonous Lactobacillus rhamnosus strains of human origin. Applied Biochemistry and Biotechnology, 173 (1), 259-277. https://doi.org/10.1007/s12010-014-0839-9
[21] Lindahl, M. Faris, A. Wadström, T. & Hjerten, S. (1981). A new test based on ‘salting out’to measure relative hydrophobicity of bacterial cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 677 (3-4), 471-476. https://doi.org/10.1016/0304-4165(81)90261-0
[22] Del Re, B. Busetto, A. Vignola, G. Sgorbati, B. & Palenzona, D. L. (1998). Autoaggregation and adhesion ability in a Bifidobacterium suis strain. Letters in Applied Microbiology, 27 (5), 307-310. https://doi.org/10.1046/j.1472-765X.1998.t01-1-00449.x.
[23] Dhanani, A. S. & Bagchi, T. (2013). The expression of adhesin EF-Tu in response to mucin and its role in Lactobacillus adhesion and competitive inhibition of enteropathogens to mucin. Journal of Applied Microbiology, 115 (2), 546-554. https://doi.org/10.1111/jam.12249.
[24] Schillinger, U. (1989). Antibacterial activity of Lactobacillus sake isolated from meat. Applied and Environmental Microbiology, 55 (8), 1901-1906. https://doi.org/10.1128%2Faem.55.8.1901-1906.1989.
[25] Magnusson, J. & Schnürer, J. (2001). Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Applied and Environmental Microbiology, 67 (1), 1-5. https://doi.org/10.1128%2FAEM.67.1.1-5.2001.
[26] Taranto, M. P. Fernandez Murga, M. L. Lorca, G. & de Valdez, G. F. (2003). Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. Journal of Applied Microbiology, 95 (1), 86-91. https://doi.org/10.1046/j.1365-2672.2003.01962.x
[27] Shekh, S. L. Dave, J. M. & Vyas, B. R. M. (2016). Characterization of Lactobacillus plantarum strains for functionality, safety and γ-amino butyric acid production. Lwt, 74, 234-241. https://doi.org/10.3390%2Fmicroorganisms9010033
[28] Imada, A. Igarasi, S. Nakahama, K. & Isono, M. (1973). Asparaginase and glutaminase activities of micro-organisms. Microbiology, 76 (1), 85-99. https://doi.org/10.1099/00221287-76-1-85
[29] Bradford, H. F. Ward, H. K. & Thomas, A. J. (1978). Glutamine — a major substrate for nerve endings. Journal of Neurochemistry, 30 (6), 1453-1459. https://doi.org/10.1111/j.1471-4159.1978.tb10477.x
[30] Zhou, J. S. Gopal, P. K. & Gill, H. S. (2001). Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. International Journal of Food Microbiology, 63 (1-2), 81-90. https://doi.org/10.1016/s0168-1605(00)00398-6.
[31] Shuhadha, M. F. F. Panagoda, G. J. Madhujith, T. & Jayawardana, N. W. I. A. (2017). Evaluation of probiotic attributes of Lactobacillus sp. isolated from cow and buffalo curd samples collected from Kandy. Ceylon Medical Journal, 62 (3), 159-166. https://doi.org/10.4038/cmj.v62i3.8519
[32] Gueimonde, M. Noriega, L. Margolles, A. Clara, G. & Salminen, S. (2005). Ability of Bifidobacterium strains with acquired resistance to bile to adhere to human intestinal mucus. International Journal of Food Microbiology, 101 (3), 341-346. https://doi.org/10.1016/j.ijfoodmicro.2004.11.013
[33] Dunne, C. O'Mahony, L. Murphy, L. Thornton, G. Morrissey, D. O'Halloran, S.... & Collins, J. K. (2001). In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. The American Journal of Clinical Nutrition, 73 (2), 386s-392s. https://doi.org/10.1093/ajcn/73.2.386s
[34] Mahmoud, E. A. Svensson, L. O. Olsson, S. E. & Mårdh, P. A. (1995). Antichlamydial activity of vaginal secretion. American Journal of Obstetrics and Gynecology, 172 (4), 1268-1272. https://doi.org/10.1016/0002-9378(95)91491-9
[35] Garg, S. Anderson, R. A. Chany II, C. J. Waller, D. P. Diao, X. H. Vermani, K. & Zaneveld, L. J. (2001). Properties of a new acid-buffering bioadhesive vaginal formulation (ACIDFORM). Contraception, 64 (1), 67-75. https://doi.org/10.1016/s0010-7824(01)00217-7
[36] Pithva, S. P. Ambalam, P. S. Ramoliya, J. M. Dave, J. M. & Vyas, B. R. M. (2015). Antigenotoxic and antimutagenic activities of probiotic Lactobacillus rhamnosus Vc against N-Methyl-N′-Nitro-N-Nitrosoguanidine. Nutrition and Cancer, 67 (7), 1142-1150. https://doi.org/10.1080/01635581.2015.1073751
[37] Sadrani H. E. M. A. L, Dave J. A. Y. A. N. T. I. L. A. L, Vyas, B. R. M. (2014) Screening of potential probiotic Lactobacillus strains isolated from fermented foods, fruits and of human origin. Asian Journal of Pharmaceutical and Clinical Research, 7 (2), 216-225. https://innovareacademics.in/journals/index.php/ajpcr/article/view/1021.
[38] Ambalam, P. Pithva, S. Kothari, C. Kothari, R. Parmar, N. Nathani, N. M. & Vyas, B. R. M. (2014). Insight into the draft genome sequence of human isolate Lactobacillus rhamnosus LR231, a bacterium with probiotic potential. Genome Announcements, 2 (1), e00111-14. https://doi.org/10.1128%2FgenomeA.00111-14
[39] Prema, P. Smila, D. Palavesam, A. & Immanuel, G. (2010). Production and characterization of an antifungal compound (3-phenyllactic acid) produced by Lactobacillus plantarum strain. Food and Bioprocess Technology, 3 (3), 379-386. https://www.researchgate.net/publication/226771967_Production_and_Characterization_of_an_Antifungal_Compound_3Phenyllactic_Acid_Produced_by_Lactobacillus_plantarum_Strain
[40] Patel, A. K. Singhania, R. R. Pandey, A. & Chincholkar, S. B. (2010). Probiotic bile salt hydrolase: current developments and perspectives. Applied Biochemistry and Biotechnology, 162 (1), 166-180. https://doi.org/10.1007/s12010-009-8738-1
[41] O’Flaherty, S. Briner Crawley, A. Theriot, C. M. & Barrangou, R. (2018). The Lactobacillus bile salt hydrolase repertoire reveals niche-specific adaptation. MSphere, 3 (3), e00140-18. https://doi.org/10.1128/msphere.00140-18
[42] Jones, B. V. Begley, M. Hill, C. Gahan, C. G. & Marchesi, J. R. (2008). Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proceedings of the National Academy of Sciences, 105 (36), 13580-13585. https://doi.org/10.1073/pnas.0804437105
[43] De Smet, I. Van Hoorde, L. Vande Woestyne, M. Christiaens, H. & Verstraete, W. (1995). Significance of bile salt hydrolytic activities of lactobacilli. Journal of Applied Bacteriology, 79 (3), 292-301. https://doi.org/10.1111/j.1365-2672.1995.tb03140.x.
[44] Liao, P. H. Kuo, W. W. Kuo, C. H. Yeh, Y. L. Shen, C. Y. Chen, Y. H.... & Huang, C. Y. (2016). Lactobacillus reuteri GMNL-263 reduces hyperlipidaemia and the heart failure process in high-calorie diet-fed induced heart dysfunction in rats. Journal of Functional Foods, 20, 226-235. https://doi.org/10.1016/j.jff.2015.11.009
[45] Heyman, M. B. & Committee on Nutrition. (2006). Lactose intolerance in infants, children, and adolescents. Pediatrics, 118 (3), 1279-1286. https://doi.org/10.1542/peds.2006-1721
[46] Rastall, R. A. & Maitin, V. (2002). Prebiotics and synbiotics: towards the next generation. Current Opinion in Biotechnology, 13 (5), 490-496. https://doi.org/10.1016/s0958-1669(02)00365-8
[47] Warr, D. G. (2008). Chemotherapy-and cancer-related nausea and vomiting. Current Oncology, 15 (s1), 4-9. https://doi.org/10.3747%2Fco.2008.171
Cite This Article
  • APA Style

    Nilofar Yunus Bhatti, Arati Savji Chavda, Bharatkumar Rajiv Manuel Vyas. (2023). In Vitro Evaluation of Putative Probiotic Candidates Isolated from Various Origins. International Journal of Microbiology and Biotechnology, 8(1), 1-9. https://doi.org/10.11648/j.ijmb.20230801.11

    Copy | Download

    ACS Style

    Nilofar Yunus Bhatti; Arati Savji Chavda; Bharatkumar Rajiv Manuel Vyas. In Vitro Evaluation of Putative Probiotic Candidates Isolated from Various Origins. Int. J. Microbiol. Biotechnol. 2023, 8(1), 1-9. doi: 10.11648/j.ijmb.20230801.11

    Copy | Download

    AMA Style

    Nilofar Yunus Bhatti, Arati Savji Chavda, Bharatkumar Rajiv Manuel Vyas. In Vitro Evaluation of Putative Probiotic Candidates Isolated from Various Origins. Int J Microbiol Biotechnol. 2023;8(1):1-9. doi: 10.11648/j.ijmb.20230801.11

    Copy | Download

  • @article{10.11648/j.ijmb.20230801.11,
      author = {Nilofar Yunus Bhatti and Arati Savji Chavda and Bharatkumar Rajiv Manuel Vyas},
      title = {In Vitro Evaluation of Putative Probiotic Candidates Isolated from Various Origins},
      journal = {International Journal of Microbiology and Biotechnology},
      volume = {8},
      number = {1},
      pages = {1-9},
      doi = {10.11648/j.ijmb.20230801.11},
      url = {https://doi.org/10.11648/j.ijmb.20230801.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmb.20230801.11},
      abstract = {Present study describes isolation of potential probiotic lactic acid bacteria from chicken crop, human feces, buttermilk and chilly. The isolated Lactobacillus strains survive, tolerate and grow in MRS medium spiked with bile, salt and having acidic pH. The Lactobacillus isolates possess several probiotic properties, viz. (i) ability to bind gastrointestinal mucosa, up to ≥80% cells adhered mucin, (ii) 50% cells retained viability during oro-gastro-intestinal transit, (iii) all the isolates exhibited broad anti-microbial spectrum against food spoilage and gastro-intestinal pathogens, Limosilactobacillus fermentum SBM showed maximum inhibition, (iv) ability to produce enzymatic activities like L-asparaginase, β-galactosidase and bile salt hydrolase (BSH) activities, Limosilactobacillus fermentum SBM showed maximum L-asparaginase activity (2.567 U/ml), and Lactiplantibacillus pentosus GCHI showed maximum β-galactosidase activity (296±0.1 Miller’s Unit), (v) Lactiplantibacillus pentosus GCHI aggregated up to ≥92% after 24 h, and (vi) the Lactobacillus isolates were susceptible towards nucleic acid synthesis inhibitors and cell wall synthesis inhibitor antibiotics. These Lactobacillus strains do not possess haemolytic, mucin degrading and DNase activities indicating their safety. Further characterization of these strains indicated potential probiotic properties and their suitability in food formulations as probiotics. The study presents an interesting illustration of mining of potential probiotic strains from nature exhibiting health benefits for human being and animals.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - In Vitro Evaluation of Putative Probiotic Candidates Isolated from Various Origins
    AU  - Nilofar Yunus Bhatti
    AU  - Arati Savji Chavda
    AU  - Bharatkumar Rajiv Manuel Vyas
    Y1  - 2023/01/13
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ijmb.20230801.11
    DO  - 10.11648/j.ijmb.20230801.11
    T2  - International Journal of Microbiology and Biotechnology
    JF  - International Journal of Microbiology and Biotechnology
    JO  - International Journal of Microbiology and Biotechnology
    SP  - 1
    EP  - 9
    PB  - Science Publishing Group
    SN  - 2578-9686
    UR  - https://doi.org/10.11648/j.ijmb.20230801.11
    AB  - Present study describes isolation of potential probiotic lactic acid bacteria from chicken crop, human feces, buttermilk and chilly. The isolated Lactobacillus strains survive, tolerate and grow in MRS medium spiked with bile, salt and having acidic pH. The Lactobacillus isolates possess several probiotic properties, viz. (i) ability to bind gastrointestinal mucosa, up to ≥80% cells adhered mucin, (ii) 50% cells retained viability during oro-gastro-intestinal transit, (iii) all the isolates exhibited broad anti-microbial spectrum against food spoilage and gastro-intestinal pathogens, Limosilactobacillus fermentum SBM showed maximum inhibition, (iv) ability to produce enzymatic activities like L-asparaginase, β-galactosidase and bile salt hydrolase (BSH) activities, Limosilactobacillus fermentum SBM showed maximum L-asparaginase activity (2.567 U/ml), and Lactiplantibacillus pentosus GCHI showed maximum β-galactosidase activity (296±0.1 Miller’s Unit), (v) Lactiplantibacillus pentosus GCHI aggregated up to ≥92% after 24 h, and (vi) the Lactobacillus isolates were susceptible towards nucleic acid synthesis inhibitors and cell wall synthesis inhibitor antibiotics. These Lactobacillus strains do not possess haemolytic, mucin degrading and DNase activities indicating their safety. Further characterization of these strains indicated potential probiotic properties and their suitability in food formulations as probiotics. The study presents an interesting illustration of mining of potential probiotic strains from nature exhibiting health benefits for human being and animals.
    VL  - 8
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Biosciences, Saurashtra University, Rajkot, India

  • Department of Biosciences, Saurashtra University, Rajkot, India

  • Department of Biosciences, Saurashtra University, Rajkot, India

  • Sections